\(\int \frac {\sqrt {6+17 x+12 x^2}}{(2+3 x)^2 (30+31 x-12 x^2)^2} \, dx\) [136]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 34, antiderivative size = 84 \[ \int \frac {\sqrt {6+17 x+12 x^2}}{(2+3 x)^2 \left (30+31 x-12 x^2\right )^2} \, dx=-\frac {275+388 x}{98 (10-3 x) \sqrt {6+17 x+12 x^2}}+\frac {3137 \sqrt {6+17 x+12 x^2}}{38416 (10-3 x)}+\frac {97 \text {arctanh}\left (\frac {206+291 x}{84 \sqrt {6+17 x+12 x^2}}\right )}{3226944} \]

[Out]

97/3226944*arctanh(1/84*(206+291*x)/(12*x^2+17*x+6)^(1/2))+1/98*(-275-388*x)/(10-3*x)/(12*x^2+17*x+6)^(1/2)+31
37/38416*(12*x^2+17*x+6)^(1/2)/(10-3*x)

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 84, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.147, Rules used = {1016, 754, 820, 738, 212} \[ \int \frac {\sqrt {6+17 x+12 x^2}}{(2+3 x)^2 \left (30+31 x-12 x^2\right )^2} \, dx=\frac {97 \text {arctanh}\left (\frac {291 x+206}{84 \sqrt {12 x^2+17 x+6}}\right )}{3226944}-\frac {388 x+275}{98 (10-3 x) \sqrt {12 x^2+17 x+6}}+\frac {3137 \sqrt {12 x^2+17 x+6}}{38416 (10-3 x)} \]

[In]

Int[Sqrt[6 + 17*x + 12*x^2]/((2 + 3*x)^2*(30 + 31*x - 12*x^2)^2),x]

[Out]

-1/98*(275 + 388*x)/((10 - 3*x)*Sqrt[6 + 17*x + 12*x^2]) + (3137*Sqrt[6 + 17*x + 12*x^2])/(38416*(10 - 3*x)) +
 (97*ArcTanh[(206 + 291*x)/(84*Sqrt[6 + 17*x + 12*x^2])])/3226944

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 754

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*(b
*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e)*x)*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e +
 a*e^2))), x] + Dist[1/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*Simp[b*c*d*e*(2*p - m
+ 2) + b^2*e^2*(m + p + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3) - c*e*(2*c*d - b*e)*(m + 2*p + 4)*x
, x]*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b
*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && LtQ[p, -1] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 820

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(-(e*f - d*g))*(d + e*x)^(m + 1)*((a + b*x + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 - b*d*e + a*e^2))), x] - Dist[
(b*(e*f + d*g) - 2*(c*d*f + a*e*g))/(2*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x]
, x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[S
implify[m + 2*p + 3], 0]

Rule 1016

Int[((g_) + (h_.)*(x_))^(m_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_.) + (e_.)*(x_) + (f_.)*(x_)^2)^(m_.
), x_Symbol] :> Int[(d*(g/a) + f*h*(x/c))^m*(a + b*x + c*x^2)^(m + p), x] /; FreeQ[{a, b, c, d, e, f, g, h, p}
, x] && EqQ[c*g^2 - b*g*h + a*h^2, 0] && EqQ[c^2*d*g^2 - a*c*e*g*h + a^2*f*h^2, 0] && IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \int \frac {1}{(10-3 x)^2 \left (6+17 x+12 x^2\right )^{3/2}} \, dx \\ & = -\frac {275+388 x}{98 (10-3 x) \sqrt {6+17 x+12 x^2}}-\frac {1}{882} \int \frac {-\frac {14859}{2}-10476 x}{(10-3 x)^2 \sqrt {6+17 x+12 x^2}} \, dx \\ & = -\frac {275+388 x}{98 (10-3 x) \sqrt {6+17 x+12 x^2}}+\frac {3137 \sqrt {6+17 x+12 x^2}}{38416 (10-3 x)}+\frac {97 \int \frac {1}{(10-3 x) \sqrt {6+17 x+12 x^2}} \, dx}{76832} \\ & = -\frac {275+388 x}{98 (10-3 x) \sqrt {6+17 x+12 x^2}}+\frac {3137 \sqrt {6+17 x+12 x^2}}{38416 (10-3 x)}-\frac {97 \text {Subst}\left (\int \frac {1}{7056-x^2} \, dx,x,\frac {-206-291 x}{\sqrt {6+17 x+12 x^2}}\right )}{38416} \\ & = -\frac {275+388 x}{98 (10-3 x) \sqrt {6+17 x+12 x^2}}+\frac {3137 \sqrt {6+17 x+12 x^2}}{38416 (10-3 x)}+\frac {97 \tanh ^{-1}\left (\frac {206+291 x}{84 \sqrt {6+17 x+12 x^2}}\right )}{3226944} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.26 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.95 \[ \int \frac {\sqrt {6+17 x+12 x^2}}{(2+3 x)^2 \left (30+31 x-12 x^2\right )^2} \, dx=\frac {\left (88978+98767 x-37644 x^2\right ) \sqrt {6+17 x+12 x^2}}{38416 (-10+3 x) (2+3 x) (3+4 x)}+\frac {97 \text {arctanh}\left (\frac {6 \sqrt {6+17 x+12 x^2}}{7 (2+3 x)}\right )}{1613472} \]

[In]

Integrate[Sqrt[6 + 17*x + 12*x^2]/((2 + 3*x)^2*(30 + 31*x - 12*x^2)^2),x]

[Out]

((88978 + 98767*x - 37644*x^2)*Sqrt[6 + 17*x + 12*x^2])/(38416*(-10 + 3*x)*(2 + 3*x)*(3 + 4*x)) + (97*ArcTanh[
(6*Sqrt[6 + 17*x + 12*x^2])/(7*(2 + 3*x))])/1613472

Maple [A] (verified)

Time = 0.77 (sec) , antiderivative size = 57, normalized size of antiderivative = 0.68

method result size
risch \(-\frac {37644 x^{2}-98767 x -88978}{38416 \left (3 x -10\right ) \sqrt {12 x^{2}+17 x +6}}+\frac {97 \,\operatorname {arctanh}\left (\frac {\frac {206}{3}+97 x}{28 \sqrt {12 \left (x -\frac {10}{3}\right )^{2}+97 x -\frac {382}{3}}}\right )}{3226944}\) \(57\)
trager \(-\frac {\left (37644 x^{2}-98767 x -88978\right ) \sqrt {12 x^{2}+17 x +6}}{38416 \left (36 x^{3}-69 x^{2}-152 x -60\right )}-\frac {97 \ln \left (-\frac {84 \sqrt {12 x^{2}+17 x +6}-206-291 x}{3 x -10}\right )}{3226944}\) \(74\)
default \(-\frac {\left (12 \left (x +\frac {2}{3}\right )^{2}+x +\frac {2}{3}\right )^{\frac {3}{2}}}{72 \left (x +\frac {2}{3}\right )^{2}}+\frac {\sqrt {12 \left (x +\frac {2}{3}\right )^{2}+x +\frac {2}{3}}}{288}+\frac {\ln \left (\frac {\left (\frac {17}{2}+12 x \right ) \sqrt {12}}{12}+\sqrt {12 \left (x +\frac {2}{3}\right )^{2}+x +\frac {2}{3}}\right ) \sqrt {12}}{6912}-\frac {\left (12 \left (x -\frac {10}{3}\right )^{2}+97 x -\frac {382}{3}\right )^{\frac {3}{2}}}{67765824 \left (x -\frac {10}{3}\right )}-\frac {97 \sqrt {12 \left (x -\frac {10}{3}\right )^{2}+97 x -\frac {382}{3}}}{45177216}-\frac {7057 \ln \left (\frac {\left (\frac {17}{2}+12 x \right ) \sqrt {12}}{12}+\sqrt {12 \left (x -\frac {10}{3}\right )^{2}+97 x -\frac {382}{3}}\right ) \sqrt {12}}{813189888}+\frac {97 \,\operatorname {arctanh}\left (\frac {\frac {206}{3}+97 x}{28 \sqrt {12 \left (x -\frac {10}{3}\right )^{2}+97 x -\frac {382}{3}}}\right )}{3226944}+\frac {\left (17+24 x \right ) \sqrt {12 \left (x -\frac {10}{3}\right )^{2}+97 x -\frac {382}{3}}}{135531648}+\frac {32 \left (12 \left (x +\frac {3}{4}\right )^{2}-x -\frac {3}{4}\right )^{\frac {3}{2}}}{2401 \left (x +\frac {3}{4}\right )^{2}}+\frac {384 \sqrt {12 \left (x +\frac {3}{4}\right )^{2}-x -\frac {3}{4}}}{117649}-\frac {16 \ln \left (\frac {\left (\frac {17}{2}+12 x \right ) \sqrt {12}}{12}+\sqrt {12 \left (x +\frac {3}{4}\right )^{2}-x -\frac {3}{4}}\right ) \sqrt {12}}{117649}\) \(245\)

[In]

int((12*x^2+17*x+6)^(1/2)/(2+3*x)^2/(-12*x^2+31*x+30)^2,x,method=_RETURNVERBOSE)

[Out]

-1/38416*(37644*x^2-98767*x-88978)/(3*x-10)/(12*x^2+17*x+6)^(1/2)+97/3226944*arctanh(1/28*(206/3+97*x)/(12*(x-
10/3)^2+97*x-382/3)^(1/2))

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.50 \[ \int \frac {\sqrt {6+17 x+12 x^2}}{(2+3 x)^2 \left (30+31 x-12 x^2\right )^2} \, dx=\frac {97 \, {\left (36 \, x^{3} - 69 \, x^{2} - 152 \, x - 60\right )} \log \left (\frac {291 \, x + 84 \, \sqrt {12 \, x^{2} + 17 \, x + 6} + 206}{x}\right ) - 97 \, {\left (36 \, x^{3} - 69 \, x^{2} - 152 \, x - 60\right )} \log \left (\frac {291 \, x - 84 \, \sqrt {12 \, x^{2} + 17 \, x + 6} + 206}{x}\right ) - 168 \, {\left (37644 \, x^{2} - 98767 \, x - 88978\right )} \sqrt {12 \, x^{2} + 17 \, x + 6}}{6453888 \, {\left (36 \, x^{3} - 69 \, x^{2} - 152 \, x - 60\right )}} \]

[In]

integrate((12*x^2+17*x+6)^(1/2)/(2+3*x)^2/(-12*x^2+31*x+30)^2,x, algorithm="fricas")

[Out]

1/6453888*(97*(36*x^3 - 69*x^2 - 152*x - 60)*log((291*x + 84*sqrt(12*x^2 + 17*x + 6) + 206)/x) - 97*(36*x^3 -
69*x^2 - 152*x - 60)*log((291*x - 84*sqrt(12*x^2 + 17*x + 6) + 206)/x) - 168*(37644*x^2 - 98767*x - 88978)*sqr
t(12*x^2 + 17*x + 6))/(36*x^3 - 69*x^2 - 152*x - 60)

Sympy [F]

\[ \int \frac {\sqrt {6+17 x+12 x^2}}{(2+3 x)^2 \left (30+31 x-12 x^2\right )^2} \, dx=\int \frac {\sqrt {\left (3 x + 2\right ) \left (4 x + 3\right )}}{\left (3 x - 10\right )^{2} \left (3 x + 2\right )^{2} \left (4 x + 3\right )^{2}}\, dx \]

[In]

integrate((12*x**2+17*x+6)**(1/2)/(2+3*x)**2/(-12*x**2+31*x+30)**2,x)

[Out]

Integral(sqrt((3*x + 2)*(4*x + 3))/((3*x - 10)**2*(3*x + 2)**2*(4*x + 3)**2), x)

Maxima [F]

\[ \int \frac {\sqrt {6+17 x+12 x^2}}{(2+3 x)^2 \left (30+31 x-12 x^2\right )^2} \, dx=\int { \frac {\sqrt {12 \, x^{2} + 17 \, x + 6}}{{\left (12 \, x^{2} - 31 \, x - 30\right )}^{2} {\left (3 \, x + 2\right )}^{2}} \,d x } \]

[In]

integrate((12*x^2+17*x+6)^(1/2)/(2+3*x)^2/(-12*x^2+31*x+30)^2,x, algorithm="maxima")

[Out]

integrate(sqrt(12*x^2 + 17*x + 6)/((12*x^2 - 31*x - 30)^2*(3*x + 2)^2), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 159 vs. \(2 (70) = 140\).

Time = 0.32 (sec) , antiderivative size = 159, normalized size of antiderivative = 1.89 \[ \int \frac {\sqrt {6+17 x+12 x^2}}{(2+3 x)^2 \left (30+31 x-12 x^2\right )^2} \, dx=\frac {1}{9680832} \, \sqrt {3} {\left (\sqrt {3} {\left (175672 \, \sqrt {3} + 97 \, \log \left (\frac {7 \, \sqrt {3} - 12}{7 \, \sqrt {3} + 12}\right )\right )} \mathrm {sgn}\left (\frac {1}{3 \, x + 2}\right ) - {\left (97 \, \sqrt {3} \log \left (\frac {{\left | -28 \, \sqrt {3} + 24 \, \sqrt {\frac {1}{3 \, x + 2} + 4} \right |}}{4 \, {\left (7 \, \sqrt {3} + 6 \, \sqrt {\frac {1}{3 \, x + 2} + 4}\right )}}\right ) + 134456 \, \sqrt {\frac {1}{3 \, x + 2} + 4} + \frac {28 \, {\left (\frac {221183}{3 \, x + 2} - 18436\right )}}{12 \, {\left (\frac {1}{3 \, x + 2} + 4\right )}^{\frac {3}{2}} - 49 \, \sqrt {\frac {1}{3 \, x + 2} + 4}}\right )} \mathrm {sgn}\left (\frac {1}{3 \, x + 2}\right )\right )} \]

[In]

integrate((12*x^2+17*x+6)^(1/2)/(2+3*x)^2/(-12*x^2+31*x+30)^2,x, algorithm="giac")

[Out]

1/9680832*sqrt(3)*(sqrt(3)*(175672*sqrt(3) + 97*log((7*sqrt(3) - 12)/(7*sqrt(3) + 12)))*sgn(1/(3*x + 2)) - (97
*sqrt(3)*log(1/4*abs(-28*sqrt(3) + 24*sqrt(1/(3*x + 2) + 4))/(7*sqrt(3) + 6*sqrt(1/(3*x + 2) + 4))) + 134456*s
qrt(1/(3*x + 2) + 4) + 28*(221183/(3*x + 2) - 18436)/(12*(1/(3*x + 2) + 4)^(3/2) - 49*sqrt(1/(3*x + 2) + 4)))*
sgn(1/(3*x + 2)))

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {6+17 x+12 x^2}}{(2+3 x)^2 \left (30+31 x-12 x^2\right )^2} \, dx=\int \frac {\sqrt {12\,x^2+17\,x+6}}{{\left (3\,x+2\right )}^2\,{\left (-12\,x^2+31\,x+30\right )}^2} \,d x \]

[In]

int((17*x + 12*x^2 + 6)^(1/2)/((3*x + 2)^2*(31*x - 12*x^2 + 30)^2),x)

[Out]

int((17*x + 12*x^2 + 6)^(1/2)/((3*x + 2)^2*(31*x - 12*x^2 + 30)^2), x)